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ABSTRACT 

In this paper, we construct an example of a C 1 expanding map of the circ]e 

which preserves Lebesgue measure such that the system is ergodic, but not 

weak-mixing. This contrasts with the case of C I+~ maps, where any such 

map preserving Lebesgue measure has a Bernoulli natural extension and 

hence is weak-mixing. 

1. I n t r o d u c t i o n  

In this paper, we apply techniques of [7] to prove the following theorem. 

THEOREM 1: There is a C 1 expanding map of the circle preserv ing Lebesgue  

measure, such that  Lebesgue measure is ergodic for the map, but  not  weak- 

mixing.  

This is in contrast with results for the C 1+~ case, where it is known that if 

such a map preserves Lebesgue measure, then the natural extension of the trans- 

formation is Bernoulli [8]. Previously, Bose [2] has established the existence of a 

piecewise monotone and continuous expansive map preserving Lebesgue measure 

which is weak-mixing but not ergodic. (He also found piecewise monotone and 

continuous maps which are weak- but not strong-mixing; and strong-mixing but 

not exact). These proofs were based on the construction of generalized baker's 

transformations (see [1] for details). 
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We will make extensive use of g-measures in what follows. For a fuller 

description of g-measures, the reader is referred to [4], [6] and [7]. Here, we will 

construct a g-function on the symbol space 

~10 ------ { 0 , . . .  ,9} z+ ---- {XoXlX2" "': xi e {0, . . .  ,9}} 

with shift map a (that is a continuous function g satisfying 0 < g(x)  < 1 for all 

x and ~--~yea_l(z)g(y) = 1 for all x). Given such a g, we consider sequences of 

random variables (X~): ~t ~ {0 . . . . .  9} satisfying 

(1) P(Xn  = i[ X n - 1  = al,  X n - 2  = a2, . . . )  = g(i, al,  a2, . .  . ), 

for all n. There are then natural maps pn: gt --~ Elo defined by pn(w) = X n - i ( w ) .  

These maps induce natural push-forward maps of probability distributions on ~t 

to probability measures on El0 defined by p*(P)(A)  = P(p~I (A) ) .  A g-measure 

is a push-forward under p; of any stationary distribution. Another way of charac- 

terizing g-measures on symbol spaces is that a g-measure is a measure v satisfying 

n+l) 
(2) limoo v([x]n ) - g(ix) ,  

for all x E El0, where Ix] n denotes the cylinder of those points of El0 which agree 

with x for the first n terms, and i x  denotes the sequence in El0 which consists 

of the symbol i followed by the sequence x. 

We will need to consider g-functions which have the property of c o m p a t i b i l i t y  

introduced in [6], that is g(000. . .  ) = g(999. . .  ) and g(a i999 . . .  ) = g (a jO00 . . .  ), 

for any 0 < i < 9, j = i + 1, and any finite word a. We will need the following 

result from [7]. 

LEMMA 2: Let  g be a compatible  g-function on Er. Then i f  v is a g-measure, 

there is a C 1 expanding m a p  T: S 1 -* S 1 preserving Lebesgue measure A, such 

that  (a, Er, v) is measure-theoret ical ly  isomorphic to (T, S 1, A). 

Proof'. Let ~r denote the map from Er to S 1 given by x ~ ~-~.i~=o x i r - ( i+l )  

(mod 1). This is a semiconjugacy from (a, Er) to (S1,Tr), where T~(x) = rx  

(mod 1). The semiconjugacy is one-to-one off a countable set. Let v be as 

defined in the statement of the lemma and let # be a measure defined on S 1 by 

#(A)  = v ( r - X ( A ) ) .  Next, let h: S 1 ~ S 1 be given by h(x)  = #([0, x]). This 

is an orientation-preserving homeomorphism of the circle (using the properties 
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of g-measures tha t  they are non-atomic and fully supported).  Let ~ be the 

push-forward of #: fi(A) = p ( h - l ( A ) ) .  Then we see fi([0, x]) = u(h-l[O,x]) = 

u([O,h-l(x)]) = x. I t  follows tha t  fi is in fact Lebesgue measure ~. Let t ing 

T = h o Tr o h -1,  we see the systems ( T , S  1, ~) and (a ,E~ ,u )  are measure- 

theoretically isomorphic by the map  h o 7r. Now take x E S 1 and y < x < z with 

y near, but  not equal to z. Then  we have 

T(z)  - T(y )  A(T([y, z])) p(T~[h- ly ,  h - l z ] )  

z - y z]) . ( [ h - l y ,  h-lz]) 
u ( r - l ( T ~ [ h - l y ,  h - l z ] ) )  _ u(a(Tr-l([h-lY,  h - l z ] ) ) )  

h - l z ] ) )  h - l z ] ) )  

This can be seen to converge to 1/g( l r - lh - l (x ' ) )  as y and z converge to x, using 

the compatibi l i ty of g if x is a preimage of 0. It  follows tha t  T is a C 1 expanding 

map preserving Lebesgue measure as claimed. | 

It will then be sufficient to construct  an example of a compatible g-function 

having a g-measure which is ergodic but  not weak-mixing. 

We start  with some prel iminary definitions. As in [7], we introduce a partial  

order on El0. First define 3 -< i -< 6 for any 0 < i < 9. Then  x ~ y if xi -'< Yi 

for all i C Z +. A function f :  El0 --+ R is called m o n o t o n i c  if f ( x )  < f ( y )  

whenever x _-< y. We will say tha t  a function f :  El0 --~ ]~ is p r e c o m p a t i b l e  if 

f ( 0 9 0 9 0 9 . . . )  = f ( 9 0 9 0 9 0 . . . )  and f (a i090909 . . . )  -- f (a j909090.  .. ), where a 

is any finite word, i is any symbol with 0 _< i < 9 and j = i + 1. We write this 

second condition as f(b,  090909 . . .  ) -- f (b  + 1, 909090 . . .  ) for any finite word b 

not ending in a 9. 

We will need to consider the involutions on El0 given by 

F(x),~ = { 9 -  xn i f n i s o d d ,  

x ,  if n is even; 

R(x)n  = 9 - x,~. 

Write �9 for R(x) ,  Fc for F(x )  and ~ for R o F(x) .  We say tha t  a function f is 

s y m m e t r i c  if f (2 )  = f ( x )  for all x. 

Write 7r for the map Elo --+ I ,  defined by x ~ ~ o X ~ 1 0  -(i+1). We will 

identify El0 with I and often omit reference to ~r, when applying functions on I 

to arguments  in ElO. 
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2. C o n s t r u c t i o n  o f  t h e  E x a m p l e  

To construct the example, we will use the following lemma. 

LEMMA 3: There exists a precompatible, compatible, symmetric, monotonic 

g-function g with the property that if  one considers random variables (X~) 

evolving as 

P(X~ = il X~- I  = al, Xn-2 : a2, . . .  ) : h(i, al, a2 , . . .  ), 

1 SUCh that conditioned upon Xi  = 6, for all i < O, then there exists a 13 > 

P(Xn -- 6) > /3  for all n. 

We will write P6 for the probability distribution on (X~) defined in this way. 

The construction shown here differs from the construction in [7] only in the initial 

stages. The reader should note that  that  paper in turn is based on [3]. 

Proof Define 6(x) = X6(x )  - X 3(x ) ,  where Xi(x) is 1 if x0 = i and 0 otherwise. 

Then let A,~(x) m-1 -- ~-~i~-o 5(ci(x)) �9 To construct h, we will need to define a 

collection of functions Wim,~: El0 --+ (0, 1) indexed by 0 < i < 9 and m > n > 0. 

These will be based on a family of functions V,~,~ whose existence is asserted by 

the following lemma. 

LEMMA 4: There exists a family Vm,~ (where m > n > O) of compatible, 

precompatible, monotonic H6lder continuous functions satisfying 

0 < Vm,,~(x) < 1, 
I 1  i f A m ( x  ) > n, 

Ym,,~(x) = 0 i f  Am(x) < n. 

The construction of the Vm,,~ is rather involved and is (in the author 's  opinion) 

a distraction from the main flow of the paper. It  has therefore been relegated 

to an appendix to the paper. Once the Vm,n have been defined, the W,~,n are 

defined as follows: 

w~,n(x) = ~0 + �89 
w~ n(x)= w~ n(~), 

i w ~ , , A x )  = ~ - �89 + Vm,n(~)) for i ~ 3,6. 

9 Note that  for each x, ~i=o W~,n(x) = 1 and since we require n > 0, we have 

that  for each x, only one of Vm,n(x) and Vm,,~(~) is positive. This implies that  
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1{2.1i oo WC,,n(x) is bounded  below by 3 for i # 3, 6. Let  qj = ~ t~ j  , so ~-~j=l qJ = 1. 
oo 

We will choose nj and mj such tha t  taking g(ix) = ~ j = l  qjW~m~,% (x) will give a 

compat ib le  continuous g wi th  more  than  one g-measure.  The  choice of nj and mj  

will be made  inductively, by considering certain Hhlder continuous t runca t ions  of 

the final g-function. Suppose n l , . . .  , nk-1  and m l , . . . ,  m k - 1  are chosen. Then  

define vectors as follows: 

I t  : ' 80 ~ 80 ~ 5 '  80 ~ 80 ~ 1 0 '  80 ~ 80 ~ ' 

( 3 3  3 1 3 3 3 3  3 3 )  
V = ' 8 0 '  8 0 '  1 0 '  80 ~ 8 0 '  5 ~ 80 ~ 8 0 '  

/ 3  3 3 3 3 7 3 3 
Z : ~ '  8 0 '  8 0 '  20 ~ 8 0 '  8 0 '  2 0 '  8 0 '  8 0 '  ' 

with indices running f rom 0 to 9. Now define 

k--1 c~ 

gt(ix) Z Wi = qj m~,w(x)+ E q j z l ,  
j = l  j=k 

k--1 

g (ix) Z i = qjWm~,n 3 (x) + qkui q- qjv i ,  
j = l  j = k + l  

k--1 oo 

qjWC, j,,~,(x) + qkW~a,N(X ) + E qjvi, 
j = l  j=k+l  

where M > N > 0. These are all Hhlder continuous g-functions and as such 

have unique g-measures  (see [8]), which we call # i  where e = 1, 2, 3. Firs t  note  

t ha t  glk is symmetr ic :  g~(1 - x) = 1 - g~(x). This  means  the unique invariant  

measure  must  be preserved under  the involution x ~ 1 - x. I t  follows tha t  

#~[6] = p~[3]. We will use the order-preserving proper t ies  of ~} to show tha t  
_ I (2lk #3([6]) > #~([6]) > #~([6]) and ,3([3]) _< #2([3]) < #~([3]). Let  ak  = i-g,g,  �9 

LEMMA 5: We have #~([61) >_ #~( [6 ] )+2ak  and/22([31) < # ~ ( [ 3 ] ) - 2 a k .  Further ,  

suppose we are given x E ElO. Then there is a coupling of the two processes (Yn) 

and (Zn) evolving under g2 and g3 respectively, conditioned on Yi = Zi = x - i ,  

t'or all i <_ 0 such that Yn ~_ Z~ with probability i/'or all n. 

Proo~ The  proof  works by finding couplings of two processes evolving under  

different g-functions,  which make  it obvious t ha t  the required inequalit ies hold. 

I t  is easy to check tha t  g2(6x) - g~(6x) = 2ak and g2(3x) - g~(3x) --- - 2 a k ,  

while g2(ix) = g~(ix) for all i # 3, 6 and all x. 
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We use this to give an explicit coupling of two random processes (X,~) and 

(Y,~) evolving under gl and g2 respectively as in (1). We write P(ix, jy) for the 

probability that i is added to x and j is added to y. The transition probability 

will only be defined when x _ y, and it must therefore have P(ix ~_ jy)  = 1 in 

order that  it can be applied repeatedly. Suppose x -< y. Then define 

/ gkl(6x) 

max(O, g~(ix) - g~(iy) ) 
min(gi(ix ), g~(iy) ) 

P(ix,  jy) = max(O, g2(iy ) _ gi(ix)) 

min(g2(6y) - gl(6x), gi(3x) - g~(3y)) 

We note that all the transition probabilities are non-negative, and we must just 

check that  the marginals of this coupling are as claimed. We compute one exam- 

ple as an illustration. We will show that  under P, the probability that  x goes to 

3x is g~(3x) as required. By observation, we see that the probability that  x goes 

to 3x is 

i f i = j = 6 ,  
if i ~ 3,6 and j -- 6, 

i f / = j  ~ 3,6, 

if i = 3 and j r 3, 6, 

i f i  = 3 and j = 6, 

i f / = j  = 3 .  

g (3y)+min(g (6y) -g (3y))+8max(O,g (iy) 
= g (3x) +min(g (6y) -g (6x) -g (3x) 

+8max(O,g (iy) 
=gi(3x)+min(Sgi(ix) -8g (ix),O) +8max(O,g (iy) -gi(ix)) 

as required, where i is any symbol distinct from 3 and 6. This shows that  given 

that x -< y, we can choose i and j such that  y evolves according to g2 and x 

according to gl such that  with probability 1, ix ~ jy. Looking further at the 

coupling, we see that  the probability that y is preceded by a 6 and x is not 

- gk(6y) 2ak _ g (6y) - g~(6y) 2 1 preceded by a 6 given that  x -< y is g~(6x), but = 

and g~(6y) _> gl(6x), so it follows that with (x, y) goes to (ix, 6y) for some i r 6 

with probability at least 2ak. It follows that #2([6]) _> #~([6]) + 2ak. A similar 

argument shows that #~([3]) < #1([3]) - 2ak. 

To prove the remaining parts of the Lemma, it is necessary to consider a 

coupling of processes (Yn) evolving under g~ and (Zn) evolving under g3. This 

is done by a coupling exactly similar to the coupling above, with g2 replacing g~ 
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and g3 replacing g2. The conclusion then is that  given that  y -< z, then y can 

be allowed to evolve under g2 and z under g3 in such a way that  the ordering is 

preserved. For a more formal and general discussion of couplings, the reader is 

referred to Lindvall 's book [5]. | 

We nov," describe the inductive choice of mk and nk. In each case, 

nk is given by [akmkJ. Suppose we have chosen m l , m 2 , . . . , m k - 1  and hence 

nl,  n2, . . . .  �9 , nk-1. Let ,l(x) X[6](x) - X[3l(x) and Aj(x)  z-.~=o~'~mj-1 rl(a{(x)). Let 

Gj = {x: Aj(x)  > nj} and/-/3. = {x: Aj (z )  >_ 3nj}. Then note that  a-~J(Hj) C_ 

Gj. Note also that  if x E Hj and y ___ x, then y E Hi.  Assume that  there are 

t l , t2 , . . . tk-1  such tha t  

(3) P ( ( X q , X q _ l , . . . ) e H j ] X _ i = x , ,  Y i _ > 0 ) _ ~ l - 4  - j ,  

for all j < k and x E El0, where the Xn evolve according to g3. 

Let Am = {x: Am(x) > 3akin}. We know f •(x) d#2(x) >_ 4ak and we will 

use this to show #~(A,~) -~ 1 as m -~ oo. 

LEMMA 6: We have #2(Am) ---) 1 as m -* oo. 

Proof." Suppose the claim does not hold. Since we have #~(Am) _< 1 for all m, 

the only way the claim can fail is if there exists an e > 0 and a sequence M~ such 

that  1~2(Au,) < 1 -- �9 for all i. In this case, we have 

Let S be [~j [.Ji>d A~C" If x E S then 

n - - 1  

lim inf 1 E - < 3 a k .  
n--.~ n 

/ = 0  

We have however that  #2 is ergodic, so for almost all x (with respect to p2), we 

have 
n - - 1  

lim 1 E - , ( ~  _ 4 , ,k .  
n ---* oo n 

i=O 

This is a contradiction. 1 

Next, pick mk such that  p~(A,~)  > 1 - 4  -k  and akmk > tk-1. Now Hk = Amk. 

Since g~ is H61der continuous, we can apply Walters '  theorem [8] to get that  
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~.g~nX~Hk(X ) converges uniformly to #2(Hk), which is greater than 1 - 4  -k.  It  

follows that  there exists a tk such that  f~g~t~XH~(X ) _~ 1 - 4 -~, for all x E El0. 

This says that  for all x E El0, 

l~((Xt~,Xt~_l . . . .  ) ~ Hkl X_~ : xl, Vi > 0) > 1 - 4 -k ,  

where the Xn evolve according to g~, but by the second statement of Lemma 5, 

it follows that  the same equation holds when the evolution is according to g3. 

This is precisely the statement of (3) when we take j to be k. This completes 

the inductive step. 

To complete the inductive construction of the example, it remains only to 

specify an initial case for the induction. Taking to > 1, applying the above 

induction step produces mx, nl and tl  which can be used as a starting point for 

the induction. 

In the above section, the mi and ni were inductively constructed, so the 

g-function is now given by 

OO 

i g(ix) = ~ qjW~,n~ (x). 
j = l  

This is clearly compatible, precompatible, monotonic and continuous. 

We consider the events E L that  (Xt, Xt -1 , . . .  ) E Hk. Write F6 for the proba- 

bility distribution of the X~ conditioned on Xi = 6 for all i < 0 with subsequent 

evolution under g. Informally, E~ is the event that  the process has a 'large 

majori ty of 6s over 3s at the mk scale at t ime t'. We then consider letting the 

process evolve from an initial condition of all 6s (so P6(E ~ = 1, Vk). We show 

inductively that  the events E L have a high probability by induction on t, using 

the result of (3), which says that  if the process has a large majori ty of 6s on 

scales ink+l, ink+2, �9 �9 �9 at t ime t -  tk, then with high probability, the process will 

have a majori ty of 6s on scale mk at t ime t. 

LEMMA 7: We have 

(4) ?6 (EL)  > 1 - Ck, 

3 - k  f o r a l l t E Z a n d k E N ,  w h e r e { k = 3 4  �9 

Proof: The proof is by induction on t. Note that  the hypothesis is automati-  

cally true for all k if t < 0, so we need only prove the inductive step. Suppose 
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(4) holds for all t < s then pick k E 5I. Let S = Nj>k ~-tk E~ . Then  by the 

induction hypothesis ,  P6(So) -< ~ j > k  {J = 541 -k .  Now we decompose  E~ c as 

(E~ c N S) U (E~ c A S~). We then have 

1 - k  P6(E~ c) ~ P6(E~ c A S) + P6(S  c) _< P6(E~ClS) + 34 . 

But  now suppose w C S. Then  let 

x = (Xs-tk,  X s - t ~ - l , . . .  ) and z = (X~, X ~ - I , . . .  ). 

Then  x G Nj>k Hi. I t  follows tha t  if y G a- t ( x ) ,  for some t < tk then  y E 

gk(Y), where the M and N in g3 are taken  to f]j>k Gj. In part icular ,  g(y) = 3 

be mk and nk. I t  follows tha t  the evolution of x for tk steps takes place under  

g3, but  by (3), the probabi l i ty  tha t  z C E~ c is no more than  4 -k .  In par t icular ,  
8C we have shown tha t  P6(E  k ) < 4k as required. This  completes  the proof  of the 

inductive step and hence of the lemma.  II 

We apply  this by calculat ing P6(Xn = 6). Using the L e m m a  above, this is 

bounded below by Y~j>I qJ ((1 - 4j)3 + ~j ~0)" This  turns  out to be equal  to 21 40" 
Let #n = P*(P6), as defined in w Then  we have 

#n+l([ix] m+l) = f g(iy) dp,~(y). 
]~ 

En--1 Now let un = �88 j=o #J" Then  we see 

- f g(iy) < - -  ~ "  

Taking a weak*-convergent  subsequence un~ ~ u of the un, we find 

, ([ ix]  re+l) = f g(iy) d,(y) .  

As noted in w this implies tha t  v is a g-measure.  However #,([6])  > 2~ for all 

21 This  completes  the proof  of L e m m a  3. II n, so it follows tha t  ~([6]) > ~ .  
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3. P r o o f  o f  T h e o r e m  1 

In this section, we use the results of w to prove Theorem 1, subject to the 

construction of Vm,n in the appendix. 

P r o o f  o f  Theorem 1: Let g and P6 be as defined in the previous section. Take 

#n = pn(P6) and form Cess sums vn = • ~-~i=o #i .  Then we see (as in [7]) that  

if v~  is a weak*-convergent subsequence, converging to a measure v, then v is a 

g-measure. We see also that  v([6]), the measure of those members  of Zlo start ing 

with a 6 is at least ~. We may assume v is ergodic, for otherwise, by ergodic 

decompostion, there is another g-measure with this property. If v is not ergodic 
1 with respect t o  a 2, then one can check that  there exist sets A and B of measure 

such that  a - l ( A )  = B and a - l ( B )  = A.  It  then follows quickly that  v is ergodic 

but not weak-mixing and by Lemma 2 and the compatibility of g, Theorem 1 

follows. It  remains to consider the case where v is ergodic with respect to a 2. 

We note that  the involution F defined above is not shift-commuting, but that  F 

does commute with a 2. Define a new measure p by #(A) = lv( ,4)  + iv (A) .  This 

is shift-invariant. Now we have 

#([ix] n+l)  _ lV([/x]n+I) + lp([/~]n+l)  __ p([i~]n+l) + p([~:ln+l) 

 ([xln) + - + 

Then using the symmetry  of g, we see g( i~)  = g ( ~ ) ,  so we get 

lim #([ix]n+1) - g(i~:) = g o F ( i x ) .  

It  follows that  p is an h-measure, where h = g o F. Note that  by the precom- 

patibility of g, h is compatible. I t  remains to show that  # is ergodic but not 

weak-mixing. Suppose for a contradiction that  a - l ( A )  = A and 0 < #(A) < 1. 

Then , ( A )  = �89 + �89 but a - ' ( A )  = ,4 and a-1( ,4)  = ,4. It  follows that  

v(,4) = v(A), so 0 < v(A) < 1. But this is a contradiction as a-2( ,4)  = A and v 

is assumed to be ergodic with respect to a 2, proving that  # is ergodic. 
1 1 Next, note that  # is not ergodic with respect to 0 2 as # = 3#1 + g#2, where #1 

and #2 are a2-invariant measures defined by ~I(A) = v(A) and #2(A) = v(A). 

These are not equal as ~1([6]) > �89 > #2([6]). It  follows that  # is not weak-mixing, 

thus completing the proof of Theorem 1 subject to the proof of Lemma 4 in the 

appendix. | 
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A p p e n d i x .  C o n s t r u c t i o n  o f  Vm,~ 

Proof of L e m m a  4: In this  appendix ,  we give the  cons t ruc t ion  of the  funct ion 

Vm,~, which was in t roduced  in w F i r s t  we define a con t rac t ion  m a p  s on the  

subspace  X of (C[0, 1]) 4 wi th  the  met r ic  induced by the uniform norm:  

X = {(f l ,  f2, f3, f4): fi: [0,1] ---* [0, 1]; f l (O) -- f3(O) = O, f1(1) = f3(1) = 1, 

f2(O) = f4(O) : 1, f2(1) -- f4(1) = 0}. 

We will ident i fy I wi th  El0 so cr 2 will denote  the  m a p  x ~-* 100x m o d  1. The  

m a p / :  is defined b y / : ( f l ,  f2, f3, f4) = (g, ,  g2, g3, g4), where 

0 0 < x < .04 

�89 .04 < X < .05 
1 1 2 + -~fl(cr (x)) .05 _< x < .06 

1 .06 < x < .09 
1 1 2 + ~f4(a (x)) .09 <_ x < .10 

� 8 9 1 8 9  . 1 0 _ < x < . 1 1  

0 .11 <_ x < .15 

�89 .15 <_ x < .16 

1 .16 < x ( .17 

� 8 9  .17 < x < .18 
g l ( x )  

o .18 < x < .40 
1 1 - ~ f 3 ( 1 - a 2 ( x ) )  . 4 0 < _ x < . 4 1  

~ f2(a2(x)) .41 <_ x < .42 

.42 _< x < .45 

f l(a2(x)) .45 < x < .46 

.46 <: x < .47 

�89 .47 5 x < .48 

0 .48 < x < .49 

�89 .49 < x < .50 

1 - g l (1  - x) .50 < x < 1, 
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g:(x) = 

9~(x)= { 

1 - � 8 9  0 < x < . 0 1  

~f2(~2(x)) .01 < x < .02 
0 .02 < x < .04 

�89 .04 < x < .05 

�89 + ~f1(~2(~)) .05 < x < .06 
1 .06 _< x < .07 

�89 + ~:~(a2(x)) .07 < x < .08 

�89 .08 < x < .09 

0 .09 < x < .15 

� 8 9  .15 < x < .16 

! .16 < x < .19 2 

�89 .19 _< x < .20 

gl(x) .20 < x < .80 

1 - g 2 ( 1 - x )  . 8 0 < x < 1 ,  

gl(x) 0 < x < .07 
g2(x) .07 < x < .15 

0 .15 < x < .2 

gl(x) .2 < x < 1, 

g2(x) 0 < z < .07 

gl(x) .07 < x < .15 

g2(x) .15 < x < 1. 

It  is then straightforward to check tha t  s is indeed a contract ion map  from X 

to X,  and it follows that  there is a unique fixed point, e = (el, e2, e3, e4). Using 

the fact tha t  these form a fixed point  of s  it is s traightforward to check tha t  if x 

and y agree for 2n digits, then the difference between ei(x) and ei(y) is at  most  

2 -n .  It  follows tha t  the functions ei are H61der continuous when considered as 

functions Elo ---* [0, 1]. Since the functions are continuous as maps  [0, 1] --, [0, 1], 

it follows tha t  considered as functions Elo ~ [0, 1], they are compatible.  

Next, suppose that  x -< y and x and y differ in either the zeroth or first place. 

Then  it is easy to see tha t  ei(x) < ei(y) for each i just by examining the condit ion 

tha t  e is a fixed point of s  Then  one checks that  x -~ y implies el(x) _< el(y) 

for each i by induction on the first place in which they differ. I t  follows tha t  the 

functions e~ are monotonic.  
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We also need to check the precompatibi l i ty  of the functions ei. First  note the 

following table of values of the functions e~. For later use, we include also two 

addit ional functions e~ and e6 defined by e5(x) -- 1 - e3(1 - x) and e6(x) = 

0 .0909 . . . .  9090 . . .  0 
el 0 1 0 1 
e2 1 0 1 0 
e3 0 0 0 1 
e 4 1 1 1 0 
e5 0 1 1 1 
e6 1 0 0 0 

1 - e 4 ( 1  - x ) .  

(5) 

It  is then a routine mat te r  to check tha t  e i ( a0909 . . .  ) = ei(a + 1, 9090 . . .  ) for 

each i _< 4, where a is any word of length 1 or 2 whose last digit is not  a 9. 

Then  by induct ion on the length of the word, as before, we see tha t  the e~ are 

precompatible  for each i < 4. 

We have therefore checked tha t  the e~ (1 < i < 4) are monotonic,  compatible,  

precompatible,  H51der continuous and take values as shown in (5). One can check 

tha t  e5 and e6 also have these properties. Further  the functions ei are all equal 

on the range 0.2 < x < 0.8. This implies tha t  forming f~j defined by 

x _ . 5  
f j(x) = e j ( x )  x > .5 

for 3 < i , j  _< 6 gives 16 functions, each of which is monotonic,  compatible,  

precompatible  and H51der continuous. Looking at (5), we see tha t  these functions 

take all combinat ions of values of 0 and 1 on the set {0, .0909. . . . ,  . 9090 . . .  , 1}. 

We label the functions according to their values on each of these four points as 

d~1i2~3i 4 so for example doll0 takes values 0,1,1 and  0 at 0, .0909 . . .  , .9090. . .  and 

1 respectively, so dml0 = f54. 

To define Vm,n, we also need to define two further  maps  defined on words 

of S m =  {0 , . . .  ,9} m. We have already made implicit use of the equivalence 

relation ~., generated by a0909 . . . .  a + 1 , 9 0 9 0 . . . ,  for any word a not  ending 

with a 9 when discussing precompatibili ty.  Given a word a E Sin, define r  

by the requirement tha t  a0909 . . . .  r  and r  by the requirement  

tha t  a9090 . . . .  r  . . . .  We are now in a posit ion to specify Vm,n. This 

is defined cylinder by cylinder. If a E Sin, write [a] for those elements of ElO 

whose first m digits are given by a. Define ~: Sm ~ {0,1} by ~(b) = 1 if 
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Am(b) > n and ~(b) = 0 otherwise. By a + 1, we mean the word obtained by 

adding 1 (with carry if necessary). The word a - 1 is defined similarly, so for 

example, 99999 -{- 1 = 00000 and 88900 - 1 -- 88899. Then given a E S,~, define 

N(a)  = ~(a - 1) ,~(r162 + 1). Note that  lAin(a) - Am(a  -{- 1)1 , 

lAin(a) -- A,~(a -- 1)l, IAm(a) - -  Am(r I and IAm(a) - -  Am(r  I are all 

bounded above by 1. Given this, we set 

1 Am(a) > n, 

Vm,, ltoj(x) = 0 Am(a) < n, 
dN(a)(am(x)) Am(a) = n. 

The function Vm,n defined in this way is then seen to be HSlder continuous, 

monotonic, compatible and precompatible. Further, it satisfies 0 ~ Vm,,~ <_ 1, 

Vm,n(x) = 1 when A,~(x) > n and V,~,n(x) = 0 when Am(X) < n as required. 

This completes the construction and hence the proof of Lemma 4 and Theorem 

1. | 
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