A C^1 EXPANDING MAP OF THE CIRCLE WHICH IS NOT WEAK-MIXING

ΒY

ANTHONY N. QUAS

Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics University of Cambridge, 16 Mill Lane, Cambridge, CB2 1SB, England e-mail: A.Quas@statslab.cam.ac.uk

ABSTRACT

In this paper, we construct an example of a C^1 expanding map of the circle which preserves Lebesgue measure such that the system is ergodic, but not weak-mixing. This contrasts with the case of $C^{1+\epsilon}$ maps, where any such map preserving Lebesgue measure has a Bernoulli natural extension and hence is weak-mixing.

1. Introduction

In this paper, we apply techniques of [7] to prove the following theorem.

THEOREM 1: There is a C^1 expanding map of the circle preserving Lebesgue measure, such that Lebesgue measure is ergodic for the map, but not weak-mixing.

This is in contrast with results for the $C^{1+\epsilon}$ case, where it is known that if such a map preserves Lebesgue measure, then the natural extension of the transformation is Bernoulli [8]. Previously, Bose [2] has established the existence of a piecewise monotone and continuous expansive map preserving Lebesgue measure which is weak-mixing but not ergodic. (He also found piecewise monotone and continuous maps which are weak- but not strong-mixing; and strong-mixing but not exact). These proofs were based on the construction of generalized baker's transformations (see [1] for details).

Received April 17, 1994 and in revised form July 11, 1994

We will make extensive use of g-measures in what follows. For a fuller description of g-measures, the reader is referred to [4], [6] and [7]. Here, we will construct a g-function on the symbol space

$$\Sigma_{10} \equiv \{0, \dots, 9\}^{\mathbb{Z}^+} = \{x_0 x_1 x_2 \cdots : x_i \in \{0, \dots, 9\}\}$$

with shift map σ (that is a continuous function g satisfying 0 < g(x) < 1 for all x and $\sum_{y \in \sigma^{-1}(x)} g(y) = 1$ for all x). Given such a g, we consider sequences of random variables $(X_n): \Omega \to \{0, \ldots, 9\}$ satisfying

(1)
$$\mathbb{P}(X_n = i | X_{n-1} = a_1, X_{n-2} = a_2, \ldots) = g(i, a_1, a_2, \ldots),$$

for all *n*. There are then natural maps $\rho_n \colon \Omega \to \Sigma_{10}$ defined by $\rho_n(\omega) = X_{n-i}(\omega)$. These maps induce natural push-forward maps of probability distributions on Ω to probability measures on Σ_{10} defined by $\rho_n^*(\mathbb{P})(A) = \mathbb{P}(\rho_n^{-1}(A))$. A *g*-measure is a push-forward under ρ_0^* of any stationary distribution. Another way of characterizing *g*-measures on symbol spaces is that a *g*-measure is a measure ν satisfying

(2)
$$\lim_{n \to \infty} \frac{\nu([ix]^{n+1})}{\nu([x]^n)} = g(ix),$$

for all $x \in \Sigma_{10}$, where $[x]^n$ denotes the cylinder of those points of Σ_{10} which agree with x for the first n terms, and ix denotes the sequence in Σ_{10} which consists of the symbol i followed by the sequence x.

We will need to consider g-functions which have the property of **compatibility** introduced in [6], that is g(000...) = g(999...) and g(ai999...) = g(aj000...), for any $0 \le i < 9$, j = i + 1, and any finite word a. We will need the following result from [7].

LEMMA 2: Let g be a compatible g-function on Σ_r . Then if ν is a g-measure, there is a C^1 expanding map $T: S^1 \to S^1$ preserving Lebesgue measure λ , such that (σ, Σ_r, ν) is measure-theoretically isomorphic to (T, S^1, λ) .

Proof: Let π denote the map from Σ_r to S^1 given by $x \mapsto \sum_{i=0}^{\infty} x_i r^{-(i+1)}$ (mod 1). This is a semiconjugacy from (σ, Σ_r) to (S^1, T_r) , where $T_r(x) = rx$ (mod 1). The semiconjugacy is one-to-one off a countable set. Let ν be as defined in the statement of the lemma and let μ be a measure defined on S^1 by $\mu(A) = \nu(\pi^{-1}(A))$. Next, let $h: S^1 \to S^1$ be given by $h(x) = \mu([0, x])$. This is an orientation-preserving homeomorphism of the circle (using the properties of g-measures that they are non-atomic and fully supported). Let $\tilde{\mu}$ be the push-forward of μ : $\tilde{\mu}(A) = \mu(h^{-1}(A))$. Then we see $\tilde{\mu}([0, x]) = \nu(h^{-1}[0, x]) = \nu([0, h^{-1}(x)]) = x$. It follows that $\tilde{\mu}$ is in fact Lebesgue measure λ . Letting $T = h \circ T_r \circ h^{-1}$, we see the systems (T, S^1, λ) and (σ, Σ_r, ν) are measure-theoretically isomorphic by the map $h \circ \pi$. Now take $x \in S^1$ and $y \leq x \leq z$ with y near, but not equal to z. Then we have

$$\frac{T(z) - T(y)}{z - y} = \frac{\lambda(T([y, z]))}{\lambda([y, z])} = \frac{\mu(T_r[h^{-1}y, h^{-1}z])}{\mu([h^{-1}y, h^{-1}z])}$$
$$= \frac{\nu(\pi^{-1}(T_r[h^{-1}y, h^{-1}z]))}{\nu(\pi^{-1}([h^{-1}y, h^{-1}z]))} = \frac{\nu(\sigma(\pi^{-1}([h^{-1}y, h^{-1}z])))}{\nu(\pi^{-1}([h^{-1}y, h^{-1}z]))}.$$

This can be seen to converge to $1/g(\pi^{-1}h^{-1}(x))$ as y and z converge to x, using the compatibility of g if x is a preimage of 0. It follows that T is a C^1 expanding map preserving Lebesgue measure as claimed.

It will then be sufficient to construct an example of a compatible g-function having a g-measure which is ergodic but not weak-mixing.

We start with some preliminary definitions. As in [7], we introduce a partial order on Σ_{10} . First define $3 \leq i \leq 6$ for any $0 \leq i \leq 9$. Then $x \leq y$ if $x_i \leq y_i$ for all $i \in \mathbb{Z}^+$. A function $f: \Sigma_{10} \to \mathbb{R}$ is called **monotonic** if $f(x) \leq f(y)$ whenever $x \leq y$. We will say that a function $f: \Sigma_{10} \to \mathbb{R}$ is **precompatible** if f(090909...) = f(909090...) and f(ai090909...) = f(aj909090...), where a is any finite word, i is any symbol with $0 \leq i < 9$ and j = i + 1. We write this second condition as f(b, 090909...) = f(b+1, 909090...) for any finite word b not ending in a 9.

We will need to consider the involutions on Σ_{10} given by

$$F(x)_n = \begin{cases} 9 - x_n & \text{if } n \text{ is odd,} \\ x_n & \text{if } n \text{ is even;} \end{cases}$$
$$R(x)_n = 9 - x_n.$$

Write \bar{x} for R(x), \hat{x} for F(x) and \tilde{x} for $R \circ F(x)$. We say that a function f is symmetric if $f(\bar{x}) = f(x)$ for all x.

Write π for the map $\Sigma_{10} \to I$, defined by $x \mapsto \sum_{i=0}^{\infty} x_i 10^{-(i+1)}$. We will identify Σ_{10} with I and often omit reference to π , when applying functions on I to arguments in Σ_{10} .

2. Construction of the Example

To construct the example, we will use the following lemma.

LEMMA 3: There exists a precompatible, compatible, symmetric, monotonic g-function g with the property that if one considers random variables (X_n) evolving as

$$\mathbb{P}(X_n = i | X_{n-1} = a_1, X_{n-2} = a_2, \ldots) = h(i, a_1, a_2, \ldots),$$

conditioned upon $X_i = 6$, for all i < 0, then there exists a $\beta > \frac{1}{2}$ such that $\mathbb{P}(X_n = 6) \ge \beta$ for all n.

We will write \mathbb{P}_6 for the probability distribution on (X_n) defined in this way. The construction shown here differs from the construction in [7] only in the initial stages. The reader should note that that paper in turn is based on [3].

Proof: Define $\delta(x) = \chi_6(x) - \chi_3(x)$, where $\chi_i(x)$ is 1 if $x_0 = i$ and 0 otherwise. Then let $\Delta_m(x) = \sum_{i=0}^{m-1} \delta(\sigma^i(x))$. To construct h, we will need to define a collection of functions $W_{m,n}^i: \Sigma_{10} \to (0,1)$ indexed by $0 \le i \le 9$ and m > n > 0. These will be based on a family of functions $V_{m,n}$ whose existence is asserted by the following lemma.

LEMMA 4: There exists a family $V_{m,n}$ (where m > n > 0) of compatible, precompatible, monotonic Hölder continuous functions satisfying

$$0 \le V_{m,n}(x) \le 1,$$

$$V_{m,n}(x) = \begin{cases} 1 & \text{if } \Delta_m(x) > n, \\ 0 & \text{if } \Delta_m(x) < n. \end{cases}$$

The construction of the $V_{m,n}$ is rather involved and is (in the author's opinion) a distraction from the main flow of the paper. It has therefore been relegated to an appendix to the paper. Once the $V_{m,n}$ have been defined, the $W_{m,n}$ are defined as follows:

$$\begin{split} W^6_{m,n}(x) &= \frac{1}{10} + \frac{1}{2} V_{m,n}(x), \\ W^3_{m,n}(x) &= W^6_{m,n}(\bar{x}), \\ W^i_{m,n}(x) &= \frac{1}{10} - \frac{1}{16} (V_{m,n}(x) + V_{m,n}(\bar{x})) \quad \text{ for } i \neq 3,6 \end{split}$$

Note that for each x, $\sum_{i=0}^{9} W_{m,n}^{i}(x) = 1$ and since we require n > 0, we have that for each x, only one of $V_{m,n}(x)$ and $V_{m,n}(\bar{x})$ is positive. This implies that

 $W_{m,n}^i(x)$ is bounded below by $\frac{3}{80}$ for $i \neq 3, 6$. Let $q_j = \frac{1}{2} (\frac{2}{3})^j$, so $\sum_{j=1}^{\infty} q_j = 1$. We will choose n_j and m_j such that taking $g(ix) = \sum_{j=1}^{\infty} q_j W_{m_j,n_j}^i(x)$ will give a compatible continuous g with more than one g-measure. The choice of n_j and m_j will be made inductively, by considering certain Hölder continuous truncations of the final g-function. Suppose n_1, \ldots, n_{k-1} and m_1, \ldots, m_{k-1} are chosen. Then define vectors as follows:

$$\begin{split} u &= \left(\frac{3}{80}, \frac{3}{80}, \frac{3}{80}, \frac{3}{5}, \frac{3}{80}, \frac{3}{80}, \frac{3}{80}, \frac{1}{10}, \frac{3}{80}, \frac{3}{80}, \frac{3}{80}\right),\\ v &= \left(\frac{3}{80}, \frac{3}{80}, \frac{3}{80}, \frac{1}{10}, \frac{3}{80}, \frac{3}{80}, \frac{3}{5}, \frac{3}{80}, \frac{3}{80}, \frac{3}{80}\right),\\ z &= \left(\frac{3}{80}, \frac{3}{80}, \frac{3}{80}, \frac{7}{20}, \frac{3}{80}, \frac{3}{80}, \frac{7}{20}, \frac{3}{80}, \frac{3}{80}, \frac{3}{80}, \frac{3}{80}\right), \end{split}$$

with indices running from 0 to 9. Now define

$$g_k^1(ix) = \sum_{j=1}^{k-1} q_j W_{m_j,n_j}^i(x) + \sum_{j=k}^{\infty} q_j z_i,$$

$$g_k^2(ix) = \sum_{j=1}^{k-1} q_j W_{m_j,n_j}^i(x) + q_k u_i + \sum_{j=k+1}^{\infty} q_j v_i,$$

$$g_k^3(ix) = \sum_{j=1}^{k-1} q_j W_{m_j,n_j}^i(x) + q_k W_{M,N}^i(x) + \sum_{j=k+1}^{\infty} q_j v_i,$$

where M > N > 0. These are all Hölder continuous g-functions and as such have unique g-measures (see [8]), which we call μ_k^e where e = 1, 2, 3. First note that g_k^1 is symmetric: $g_k^1(1-x) = 1 - g_k^1(x)$. This means the unique invariant measure must be preserved under the involution $x \mapsto 1 - x$. It follows that $\mu_k^1[6] = \mu_k^1[3]$. We will use the order-preserving properties of g to show that $\mu_k^3([6]) \ge \mu_k^2([6]) > \mu_k^1([6])$ and $\mu_k^3([3]) \le \mu_k^2([3]) < \mu_k^1([3])$. Let $\alpha_k = \frac{1}{16}(\frac{2}{3})^k$.

LEMMA 5: We have $\mu_k^2([6]) \ge \mu_k^1([6]) + 2\alpha_k$ and $\mu_k^2([3]) \le \mu_k^1([3]) - 2\alpha_k$. Further, suppose we are given $x \in \Sigma_{10}$. Then there is a coupling of the two processes (Y_n) and (Z_n) evolving under g_k^2 and g_k^3 respectively, conditioned on $Y_i = Z_i = x_{-i}$, for all $i \le 0$ such that $Y_n \preceq Z_n$ with probability 1 for all n.

Proof: The proof works by finding couplings of two processes evolving under different *g*-functions, which make it obvious that the required inequalities hold.

It is easy to check that $g_k^2(6x) - g_k^1(6x) = 2\alpha_k$ and $g_k^2(3x) - g_k^1(3x) = -2\alpha_k$, while $g_k^2(ix) = g_k^1(ix)$ for all $i \neq 3, 6$ and all x.

A. N. QUAS

We use this to give an explicit coupling of two random processes (X_n) and (Y_n) evolving under g_k^1 and g_k^2 respectively as in (1). We write P(ix, jy) for the probability that *i* is added to *x* and *j* is added to *y*. The transition probability will only be defined when $x \leq y$, and it must therefore have $\mathbb{P}(ix \leq jy) = 1$ in order that it can be applied repeatedly. Suppose $x \leq y$. Then define

$$P(ix, jy) = \begin{cases} g_k^1(6x) & \text{if } i = j = 6, \\ \max(0, g_k^1(ix) - g_k^2(iy)) & \text{if } i \neq 3, 6 \text{ and } j = 6, \\ \min(g_k^1(ix), g_k^2(iy)) & \text{if } i = j \neq 3, 6, \\ \max(0, g_k^2(iy) - g_k^1(ix)) & \text{if } i = 3 \text{ and } j \neq 3, 6, \\ \min(g_k^2(6y) - g_k^1(6x), g_k^1(3x) - g_k^2(3y)) & \text{if } i = 3 \text{ and } j = 6, \\ g_k^2(3y) & \text{if } i = j = 3. \end{cases}$$

We note that all the transition probabilities are non-negative, and we must just check that the marginals of this coupling are as claimed. We compute one example as an illustration. We will show that under P, the probability that x goes to 3x is $g_k^1(3x)$ as required. By observation, we see that the probability that x goes to 3x is

$$\begin{split} g_k^2(3y) + \min & \left(g_k^2(6y) - g_k^1(6x), g_k^1(3x) - g_k^2(3y)\right) + 8 \max(0, g_k^2(iy) - g_k^1(ix)) \\ &= g_k^1(3x) + \min \left(g_k^2(6y) - g_k^1(6x) - g_k^1(3x) + g_k^2(3y), 0\right) \\ &\quad + 8 \max(0, g_k^2(iy) - g_k^1(ix)) \\ &= g_k^1(3x) + \min \left(8g_k^1(ix) - 8g_k^2(ix), 0\right) + 8 \max\left(0, g_k^2(iy) - g_k^1(ix)\right) \\ &= g_k^1(3x) \end{split}$$

as required, where *i* is any symbol distinct from 3 and 6. This shows that given that $x \leq y$, we can choose *i* and *j* such that *y* evolves according to g_k^2 and *x* according to g_k^1 such that with probability 1, $ix \leq jy$. Looking further at the coupling, we see that the probability that *y* is preceded by a 6 and *x* is not preceded by a 6 given that $x \leq y$ is $g_k^2(6y) - g_k^1(6x)$, but $g_k^2(6y) - g_k^1(6y) = 2\alpha_k$ and $g_k^1(6y) \geq g_k^1(6x)$, so it follows that with (x, y) goes to (ix, 6y) for some $i \neq 6$ with probability at least $2\alpha_k$. It follows that $\mu_k^2([6]) \geq \mu_k^1([6]) + 2\alpha_k$. A similar argument shows that $\mu_k^2([3]) \leq \mu_k^1([3]) - 2\alpha_k$.

To prove the remaining parts of the Lemma, it is necessary to consider a coupling of processes (Y_n) evolving under g_k^2 and (Z_n) evolving under g_k^3 . This is done by a coupling exactly similar to the coupling above, with g_k^2 replacing g_k^1

364

and g_k^3 replacing g_k^2 . The conclusion then is that given that $y \leq z$, then y can be allowed to evolve under g_k^2 and z under g_k^3 in such a way that the ordering is preserved. For a more formal and general discussion of couplings, the reader is referred to Lindvall's book [5].

We now describe the inductive choice of m_k and n_k . In each case, n_k is given by $\lfloor \alpha_k m_k \rfloor$. Suppose we have chosen $m_1, m_2, \ldots, m_{k-1}$ and hence $n_1, n_2, \ldots, n_{k-1}$. Let $\eta(x) = \chi_{[6]}(x) - \chi_{[3]}(x)$ and $\Delta_j(x) = \sum_{i=0}^{m_j-1} \eta(\sigma^i(x))$. Let $G_j = \{x: \Delta_j(x) \ge n_j\}$ and $H_j = \{x: \Delta_j(x) \ge 3n_j\}$. Then note that $\sigma^{-n_j}(H_j) \subseteq$ G_j . Note also that if $x \in H_j$ and $y \succeq x$, then $y \in H_j$. Assume that there are $t_1, t_2, \ldots, t_{k-1}$ such that

(3)
$$\mathbb{P}((X_{t_j}, X_{t_j-1}, \dots) \in H_j | X_{-i} = x_i, \forall i \ge 0) \ge 1 - 4^{-j},$$

for all j < k and $x \in \Sigma_{10}$, where the X_n evolve according to g_j^3 .

Let $A_m = \{x: \Delta_m(x) > 3\alpha_k m\}$. We know $\int \eta(x) \ d\mu_k^2(x) \ge 4\alpha_k$ and we will use this to show $\mu_k^2(A_m) \to 1$ as $m \to \infty$.

LEMMA 6: We have $\mu_k^2(A_m) \to 1$ as $m \to \infty$.

Proof: Suppose the claim does not hold. Since we have $\mu_k^2(A_m) \leq 1$ for all m, the only way the claim can fail is if there exists an $\epsilon > 0$ and a sequence M_i such that $\mu_k^2(A_{M_i}) < 1 - \epsilon$ for all *i*. In this case, we have

$$\mu_k^2\left(\bigcup_{i>j}A_i^c\right) > \epsilon \text{ for all } j, \text{ so } \mu_k^2\left(\bigcap_{j}\bigcup_{i>j}A_i^c\right) \ge \epsilon.$$

Let S be $\bigcap_{i > j} A_i^c$. If $x \in S$ then

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\eta(\sigma^i(x))\leq 3\alpha_k.$$

We have however that μ_k^2 is ergodic, so for almost all x (with respect to μ_k^2), we have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\eta(\sigma^i(x))\geq 4\alpha_k.$$

This is a contradiction.

Next, pick m_k such that $\mu_k^2(A_{m_k}) > 1-4^{-k}$ and $\alpha_k m_k > t_{k-1}$. Now $H_k = A_{m_k}$. Since g_k^2 is Hölder continuous, we can apply Walters' theorem [8] to get that A. N. QUAS

Isr. J. Math.

 $\mathcal{L}_{g_k^2}{}^n \chi_{H_k}(x)$ converges uniformly to $\mu_k^2(H_k)$, which is greater than $1 - 4^{-k}$. It follows that there exists a t_k such that $\mathcal{L}_{g_k^2}{}^{t_k}\chi_{H_k}(x) \geq 1 - 4^{-k}$, for all $x \in \Sigma_{10}$. This says that for all $x \in \Sigma_{10}$,

$$\mathbb{P}((X_{t_k}, X_{t_k-1}, \dots) \in H_k | X_{-i} = x_i, \ \forall i \ge 0) \ge 1 - 4^{-k},$$

where the X_n evolve according to g_k^2 , but by the second statement of Lemma 5, it follows that the same equation holds when the evolution is according to g_k^3 . This is precisely the statement of (3) when we take j to be k. This completes the inductive step.

To complete the inductive construction of the example, it remains only to specify an initial case for the induction. Taking $t_0 > 1$, applying the above induction step produces m_1 , n_1 and t_1 which can be used as a starting point for the induction.

In the above section, the m_i and n_i were inductively constructed, so the *g*-function is now given by

$$g(ix) = \sum_{j=1}^{\infty} q_j W^i_{m_j,n_j}(x).$$

This is clearly compatible, precompatible, monotonic and continuous.

We consider the events E_k^t that $(X_t, X_{t-1}, \ldots) \in H_k$. Write \mathbb{P}_6 for the probability distribution of the X_n conditioned on $X_i = 6$ for all i < 0 with subsequent evolution under g. Informally, E_k^t is the event that the process has a 'large majority of 6s over 3s at the m_k scale at time t'. We then consider letting the process evolve from an initial condition of all 6s (so $\mathbb{P}_6(E_k^0) = 1, \forall k$). We show inductively that the events E_k^t have a high probability by induction on t, using the result of (3), which says that if the process has a large majority of 6s on scales m_{k+1}, m_{k+2}, \ldots at time $t - t_k$, then with high probability, the process will have a majority of 6s on scale m_k at time t.

LEMMA 7: We have

(4)
$$\mathbb{P}_6(E_k^t) \ge 1 - \zeta_k,$$

for all $t \in \mathbb{Z}$ and $k \in \mathbb{N}$, where $\zeta_k = \frac{3}{2}4^{-k}$.

Proof: The proof is by induction on t. Note that the hypothesis is automatically true for all k if t < 0, so we need only prove the inductive step. Suppose

(4) holds for all t < s then pick $k \in \mathbb{N}$. Let $S = \bigcap_{j>k} E_j^{s-t_k}$. Then by the induction hypothesis, $\mathbb{P}_6(S^c) \leq \sum_{j>k} \zeta_j = \frac{1}{2} 4^{-k}$. Now we decompose $E_k^{s^c}$ as $(E_k^{s^c} \cap S) \cup (E_k^{s^c} \cap S^c)$. We then have

$$\mathbb{P}_{6}(E_{k}^{sc}) \leq \mathbb{P}_{6}(E_{k}^{sc} \cap S) + \mathbb{P}_{6}(S^{c}) \leq \mathbb{P}_{6}(E_{k}^{sc}|S) + \frac{1}{2}4^{-k}.$$

But now suppose $\omega \in S$. Then let

$$x = (X_{s-t_k}, X_{s-t_k-1}, \dots)$$
 and $z = (X_s, X_{s-1}, \dots).$

Then $x \in \bigcap_{j>k} H_j$. It follows that if $y \in \sigma^{-t}(x)$, for some $t \leq t_k$ then $y \in \bigcap_{j>k} G_j$. In particular, $g(y) = g_k^3(y)$, where the M and N in g_k^3 are taken to be m_k and n_k . It follows that the evolution of x for t_k steps takes place under g_k^3 , but by (3), the probability that $z \in E_k^{sc}$ is no more than 4^{-k} . In particular, we have shown that $\mathbb{P}_6(E_k^{sc}) \leq \zeta_k$ as required. This completes the proof of the inductive step and hence of the lemma.

We apply this by calculating $\mathbb{P}_6(X_n = 6)$. Using the Lemma above, this is bounded below by $\sum_{j\geq 1} q_j \left((1-\zeta_j)\frac{3}{5}+\zeta_j\frac{1}{10}\right)$. This turns out to be equal to $\frac{21}{40}$. Let $\mu_n = \rho_n^*(\mathbb{P}_6)$, as defined in §1. Then we have

$$\mu_{n+1}([ix]^{m+1}) = \int_{[x]^m} g(iy) \ d\mu_n(y).$$

Now let $\nu_n = \frac{1}{n} \sum_{j=0}^{n-1} \mu_j$. Then we see

$$\left| \nu_n([ix]^{m+1}) - \int_{[x]^m} g(iy) \, d\nu_n(y) \right| \le \frac{2}{n}$$

Taking a weak*-convergent subsequence $\nu_{n_k} \to \nu$ of the ν_n , we find

$$\nu([ix]^{m+1}) = \int_{[x]^m} g(iy) \, d\nu(y).$$

As noted in §1, this implies that ν is a *g*-measure. However $\mu_n([6]) \ge \frac{21}{40}$, for all n, so it follows that $\nu([6]) \ge \frac{21}{40}$. This completes the proof of Lemma 3.

3. Proof of Theorem 1

In this section, we use the results of §2 to prove Theorem 1, subject to the construction of $V_{m,n}$ in the appendix.

Proof of Theorem 1: Let g and \mathbb{P}_6 be as defined in the previous section. Take $\mu_n = \rho_n^*(\mathbb{P}_6)$ and form Cesàro sums $\nu_n = \frac{1}{n} \sum_{i=0}^{n-1} \mu_i$. Then we see (as in [7]) that if ν_{n_i} is a weak*-convergent subsequence, converging to a measure ν , then ν is a g-measure. We see also that $\nu([6])$, the measure of those members of Σ_{10} starting with a 6 is at least β . We may assume ν is ergodic, for otherwise, by ergodic decomposition, there is another g-measure with this property. If ν is not ergodic with respect to σ^2 , then one can check that there exist sets A and B of measure $\frac{1}{2}$ such that $\sigma^{-1}(A) = B$ and $\sigma^{-1}(B) = A$. It then follows quickly that ν is ergodic but not weak-mixing and by Lemma 2 and the compatibility of g, Theorem 1 follows. It remains to consider the case where ν is ergodic with respect to σ^2 . We note that the involution F defined above is not shift-commuting, but that F does commute with σ^2 . Define a new measure μ by $\mu(A) = \frac{1}{2}\nu(\hat{A}) + \frac{1}{2}\nu(\tilde{A})$. This is shift-invariant. Now we have

$$\frac{\mu([ix]^{n+1})}{\mu([x]^n)} = \frac{\frac{1}{2}\nu([\hat{ix}]^{n+1}) + \frac{1}{2}\nu([\hat{ix}]^{n+1})}{\frac{1}{2}\nu([\hat{x}]^n) + \frac{1}{2}\nu([\hat{x}]^n)} = \frac{\nu([i\tilde{x}]^{n+1}) + \nu([\tilde{i}\hat{x}]^{n+1})}{\nu([\tilde{x}]^n) + \nu([\hat{x}]^n)}$$

Then using the symmetry of g, we see $g(i\tilde{x}) = g(\bar{i}\hat{x})$, so we get

$$\lim_{n\to\infty}\frac{\mu([ix]^{n+1})}{\mu([x]^n)}=g(i\tilde{x})=g\circ F(ix).$$

It follows that μ is an *h*-measure, where $h = g \circ F$. Note that by the precompatibility of g, h is compatible. It remains to show that μ is ergodic but not weak-mixing. Suppose for a contradiction that $\sigma^{-1}(A) = A$ and $0 < \mu(A) < 1$. Then $\mu(A) = \frac{1}{2}\nu(\hat{A}) + \frac{1}{2}\nu(\tilde{A})$, but $\sigma^{-1}(\tilde{A}) = \hat{A}$ and $\sigma^{-1}(\hat{A}) = \tilde{A}$. It follows that $\nu(\hat{A}) = \nu(\tilde{A})$, so $0 < \nu(\hat{A}) < 1$. But this is a contradiction as $\sigma^{-2}(\hat{A}) = \hat{A}$ and ν is assumed to be ergodic with respect to σ^2 , proving that μ is ergodic.

Next, note that μ is not ergodic with respect to σ^2 as $\mu = \frac{1}{2}\mu_1 + \frac{1}{2}\mu_2$, where μ_1 and μ_2 are σ^2 -invariant measures defined by $\mu_1(A) = \nu(\hat{A})$ and $\mu_2(A) = \nu(\tilde{A})$. These are not equal as $\mu_1([6]) > \frac{1}{2} > \mu_2([6])$. It follows that μ is not weak-mixing, thus completing the proof of Theorem 1 subject to the proof of Lemma 4 in the appendix. Vol. 93, 1996

Appendix. Construction of $V_{m,n}$

Proof of Lemma 4: In this appendix, we give the construction of the function $V_{m,n}$, which was introduced in §2. First we define a contraction map \mathcal{L} on the subspace X of $(C[0,1])^4$ with the metric induced by the uniform norm:

$$X = \{(f_1, f_2, f_3, f_4): f_i: [0, 1] \to [0, 1]; f_1(0) = f_3(0) = 0, f_1(1) = f_3(1) = 1, f_2(0) = f_4(0) = 1, f_2(1) = f_4(1) = 0\}.$$

We will identify I with Σ_{10} so σ^2 will denote the map $x \mapsto 100x \mod 1$. The map \mathcal{L} is defined by $\mathcal{L}(f_1, f_2, f_3, f_4) = (g_1, g_2, g_3, g_4)$, where

(0	$0 \le x < .04$
$g_1(x) = \langle$	$rac{1}{2}f_1(\sigma^2(x))$	$.04 \le x < .05$
	$\frac{1}{2} + \frac{1}{2}f_1(\sigma^2(x))$	$.05 \le x < .06$
	1	$.06 \le x < .09$
	$rac{1}{2}+rac{1}{2}f_4(\sigma^2(x))$	$.09 \le x < .10$
	$\frac{1}{2} - \frac{1}{2}f_4(1 - \sigma^2(x))$	$.10 \le x < .11$
	0	$.11 \le x < .15$
	$\frac{1}{2}f_1(\sigma^2(x))$	$.15 \le x < .16$
	$\frac{1}{2}$	$.16 \le x < .17$
	$\frac{1}{2}f_2(\sigma^2(x))$	$.17 \le x < .18$
	0	$.18 \le x < .40$
	$\frac{1}{2} - \frac{1}{2}f_3(1 - \sigma^2(x))$	$.40 \le x < .41$
	$\frac{1}{2}f_2(\sigma^2(x))$	$.41 \le x < .42$
	0	$.42 \le x < .45$
	$rac{1}{2}f_1(\sigma^2(x))$	$.45 \le x < .46$
	$\frac{1}{2}$	$.46 \le x < .47$
	$\frac{1}{2}f_2(\sigma^2(x))$	$.47 \le x < .48$
	0	$.48 \le x < .49$
	$rac{1}{2}f_3(\sigma^2(x))$	$.49 \le x < .50$
Į	$1-g_1(1-x)$	$.50 \le x \le 1,$

$$g_{2}(x) = \begin{cases} 1 - \frac{1}{2}f_{4}(1 - \sigma^{2}(x)) & 0 \leq x \leq .01 \\ \frac{1}{2}f_{2}(\sigma^{2}(x)) & .01 \leq x \leq .02 \\ 0 & .02 \leq x \leq .04 \\ \frac{1}{2}f_{1}(\sigma^{2}(x)) & .04 \leq x < .05 \\ \frac{1}{2} + \frac{1}{2}f_{1}(\sigma^{2}(x)) & .05 \leq x < .06 \\ 1 & .06 \leq x < .07 \\ \frac{1}{2} + \frac{1}{2}f_{2}(\sigma^{2}(x)) & .07 \leq x < .08 \\ \frac{1}{2}f_{2}(\sigma^{2}(x)) & .08 \leq x < .09 \\ 0 & .09 \leq x < .15 \\ \frac{1}{2}f_{1}(\sigma^{2}(x)) & .15 \leq x < .16 \\ \frac{1}{2} & .16 \leq x < .19 \\ \frac{1}{2}f_{4}(\sigma^{2}(x)) & .19 \leq x < .20 \\ g_{1}(x) & .20 \leq x \leq .80 \\ 1 - g_{2}(1 - x) & .80 \leq x \leq 1, \end{cases}$$

$$g_{3}(x) = \begin{cases} g_{1}(x) & 0 \leq x \leq .07 \\ g_{2}(x) & .07 \leq x \leq .15 \\ 0 & .15 \leq x \leq .2 \\ g_{1}(x) & .2 \leq x \leq 1, \end{cases}$$

$$g_{4}(x) = \begin{cases} g_{2}(x) & 0 \leq x \leq .07 \\ g_{1}(x) & .07 \leq x \leq .15 \\ g_{2}(x) & .07 \leq x \leq .15 \\ g_{2}(x) & .15 < x < 1. \end{cases}$$

It is then straightforward to check that \mathcal{L} is indeed a contraction map from X to X, and it follows that there is a unique fixed point, $e = (e_1, e_2, e_3, e_4)$. Using the fact that these form a fixed point of \mathcal{L} , it is straightforward to check that if x and y agree for 2n digits, then the difference between $e_i(x)$ and $e_i(y)$ is at most 2^{-n} . It follows that the functions e_i are Hölder continuous when considered as functions $\Sigma_{10} \to [0, 1]$. Since the functions are continuous as maps $[0, 1] \to [0, 1]$, it follows that considered as functions $\Sigma_{10} \to [0, 1]$, they are compatible.

Next, suppose that $x \prec y$ and x and y differ in either the zeroth or first place. Then it is easy to see that $e_i(x) \leq e_i(y)$ for each i just by examining the condition that e is a fixed point of \mathcal{L} . Then one checks that $x \prec y$ implies $e_i(x) \leq e_i(y)$ for each i by induction on the first place in which they differ. It follows that the functions e_i are monotonic. We also need to check the precompatibility of the functions e_i . First note the following table of values of the functions e_i . For later use, we include also two additional functions e_5 and e_6 defined by $e_5(x) = 1 - e_3(1-x)$ and $e_6(x) = 1 - e_4(1-x)$.

		0	.0909	.9090	0
	e_1	0	1	0	1
	e_2	1	0	1	0
(5)	e_3	0	0	0	1
	e_4	1	1	1	0
	e_5	0	1	1	1
	e_6	1	0	0	0

It is then a routine matter to check that $e_i(a0909...) = e_i(a + 1, 9090...)$ for each $i \leq 4$, where a is any word of length 1 or 2 whose last digit is not a 9. Then by induction on the length of the word, as before, we see that the e_i are precompatible for each $i \leq 4$.

We have therefore checked that the e_i $(1 \le i \le 4)$ are monotonic, compatible, precompatible, Hölder continuous and take values as shown in (5). One can check that e_5 and e_6 also have these properties. Further the functions e_i are all equal on the range $0.2 \le x \le 0.8$. This implies that forming f_{ij} defined by

$$f_{ij}(x) = \left\{egin{array}{cc} e_i(x) & x \leq .5 \ e_j(x) & x \geq .5 \end{array}
ight.$$

for $3 \le i, j \le 6$ gives 16 functions, each of which is monotonic, compatible, precompatible and Hölder continuous. Looking at (5), we see that these functions take all combinations of values of 0 and 1 on the set $\{0, .0909 \ldots, .9090 \ldots, 1\}$. We label the functions according to their values on each of these four points as $d_{i_1i_2i_3i_4}$ so for example d_{0110} takes values 0,1,1 and 0 at 0, .0909 ..., .9090 ... and 1 respectively, so $d_{0110} = f_{54}$.

To define $V_{m,n}$, we also need to define two further maps defined on words of $S_m = \{0, \ldots, 9\}^m$. We have already made implicit use of the equivalence relation ~ generated by $a0909 \ldots \sim a + 1,9090 \ldots$, for any word a not ending with a 9 when discussing precompatibility. Given a word $a \in S_m$, define $\phi(a)$ by the requirement that $a0909 \ldots \sim \phi(a)9090 \ldots$ and $\psi(a)$ by the requirement that $a9090 \ldots \sim \psi(a)0909 \ldots$. We are now in a position to specify $V_{m,n}$. This is defined cylinder by cylinder. If $a \in S_m$, write [a] for those elements of Σ_{10} whose first m digits are given by a. Define $\kappa: S_m \to \{0,1\}$ by $\kappa(b) = 1$ if $\Delta_m(b) > n$ and $\kappa(b) = 0$ otherwise. By a + 1, we mean the word obtained by adding 1 (with carry if necessary). The word a - 1 is defined similarly, so for example, 99999 + 1 = 00000 and 88900 - 1 = 88899. Then given $a \in S_m$, define $N(a) = \kappa(a - 1), \kappa(\phi(a)), \kappa(\psi(a)), \kappa(a + 1)$. Note that $|\Delta_m(a) - \Delta_m(a + 1)|$, $|\Delta_m(a) - \Delta_m(a - 1)|$, $|\Delta_m(a) - \Delta_m(\phi(a))|$ and $|\Delta_m(a) - \Delta_m(\psi(a))|$ are all bounded above by 1. Given this, we set

$$V_{m,n}\big|_{[a]}(x) = \begin{cases} 1 & \Delta_m(a) > n, \\ 0 & \Delta_m(a) < n, \\ d_{N(a)}(\sigma^m(x)) & \Delta_m(a) = n. \end{cases}$$

The function $V_{m,n}$ defined in this way is then seen to be Hölder continuous, monotonic, compatible and precompatible. Further, it satisfies $0 \leq V_{m,n} \leq 1$, $V_{m,n}(x) = 1$ when $\Delta_m(x) > n$ and $V_{m,n}(x) = 0$ when $\Delta_m(x) < n$ as required. This completes the construction and hence the proof of Lemma 4 and Theorem 1.

ACKNOWLEDGEMENT: The author would like to extend his thanks to Chris Bose who suggested the problem. It would be interesting to see if the other examples in [2] could also be made to be C^1 , rather than just continuous.

References

- C. J. Bose, Generalized baker's transformations, Ergodic Theory and Dynamical Systems 9 (1989), 1-17.
- [2] C. J. Bose, Mixing examples in the class of piecewise monotone and continuous maps of the unit interval, Israel Journal of Mathematics 83 (1993), 129–152.
- [3] M. Bramson and S. A. Kalikow, Nonuniqueness in g-functions, Israel Journal of Mathematics 84 (1993), 153-160.
- [4] M. Keane, Strongly mixing g-measures, Inventiones mathematicae 16 (1972), 309– 324.
- [5] T. Lindvall, Lectures on the Coupling Method, Wiley, New York, 1992.
- [6] A. N. Quas, Some problems in ergodic theory, University of Warwick Thesis, 1993.
- [7] A. N. Quas, Non-ergodicity for C^1 expanding maps and g-measures, Ergodic Theory and Dynamical Systems (to appear).
- [8] P. Walters, Ruelle's operator theorem and g-measures, Transactions of the American Mathematical Society 214 (1975), 375-387.