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ABSTRACT
In this paper, we construct an example of a C1 expanding map of the circle
which preserves Lebesgue measure such that the system is ergodic, but not
weak-mixing. This contrasts with the case of C1*¢ maps, where any such
map preserving Lebesgue measure has a Bernoulli natural extension and

hence is weak-mixing.

1. Introduction

In this paper, we apply techniques of [7] to prove the following theorem.

THEOREM 1: There is a C' expanding map of the circle preserving Lebesgue
measure, such that Lebesgue measure is ergodic for the map, but not weak-
mixing.

This is in contrast with results for the C1t¢ case, where it is known that if
such a map preserves Lebesgue measure, then the natural extension of the trans-
formation is Bernoulli [8]. Previously, Bose [2] has established the existence of a
piecewise monotone and continuous expansive map preserving Lebesgue measure
which is weak-mixing but not ergodic. (He also found piecewise monotone and
continuous maps which are weak- but not strong-mixing; and strong-mixing but

not exact). These proofs were based on the construction of generalized baker’s
transformations (see [1] for details).
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We will make extensive use of g-measures in what follows. For a fuller
description of g-measures, the reader is referred to [4], [6] and [7]. Here, we will

construct a g-function on the symbol space
- z*t
210:{0,...,9} ={x0x1z2---:x,~€{0,...,9}}

with shift map o (that is a continuous function ¢ satisfying 0 < g(z) < 1 for all
z and Zy@_l(z) g(y) = 1 for all z). Given such a g, we consider sequences of
random variables (X,): @ — {0,...,9} satisfying

(1) P(Xn = ’tl Xn—l = aj, Xn_g =as, .. ) = g(i,al,ag, N .),

for all n. There are then natural maps p,: Q — ;g defined by p,(w) = X,,_;(w).
These maps induce natural push-forward maps of probability distributions on
to probability measures on ;¢ defined by p(P)(A) = P(p;1(A)). A g-measure
is a push-forward under pj of any stationary distribution. Another way of charac-

terizing g-measures on symbol spaces is that a g-measure is a measure v satisfying

) i 2"

S

for all z € ¥y, where [z]™ denotes the cylinder of those points of 1o which agree
with z for the first n terms, and iz denotes the sequence in Y19 which consists
of the symbol ¢ followed by the sequence z.

We will need to consider g-functions which have the property of compatibility
introduced in [6], that is g(000...) = ¢(999...) and ¢(ai999...) = ¢g(aj000...),
for any 0 < 7 < 9, j =i+ 1, and any finite word a. We will need the following
result from [7].

LEMMA 2: Let g be a compatible g-function on ¥,. Then if v is a g-measure,
there is a C! expanding map T: S' — S! preserving Lebesgue measure A, such
that (o,%,,v) is measure-theoretically isomorphic to (T, S*, ).

Proof: Let 7 denote the map from ¥, to S* given by z = Y oo z;r~(+D)
(mod 1). This is a semiconjugacy from (0, %,) to ($,T;), where T,(z) = rz
(mod 1). The semiconjugacy is one-to-one off a countable set. Let v be as
defined in the statement of the lemma and let x4 be a measure defined on S! by
w(A) = v(r~1(A)). Next, let h: S — S! be given by h(x) = p([0,z]). This
is an orientation-preserving homeomorphism of the circle (using the properties
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of g-measures that they are non-atomic and fully supported). Let i be the
push-forward of p: i(A) = p(h~!(A)). Then we see i([0,z]) = v(h™1[0,z]) =
v([0,h7Y(z)]) = =. It follows that i is in fact Lebesgue measure A. Letting
T = hoT,oh !, we see the systems (7,5, )) and (0,%,,v) are measure-
theoretically isomorphic by the map ho 7. Now take z € S' and y < z < z with

y near, but not equal to z. Then we have
T(z) = T(y) _ MT(l.2)) _ p(Tlh~"y, h~2))
z—y Aly, 2]) #([h=ty, h=12))
v(n Y (T (h~'y, h™te])) _ v(o(n=([hty, h™1e])))
v(r= ([~ 1y, h12])) v(r=t([h1y,h712]))

This can be seen to converge to 1/g(m~'h~1(x)) as y and z converge to x, using
the compatibility of g if z is a preimage of 0. It follows that T is a C! expanding

map preserving Lebesgue measure as claimed. |

It will then be sufficient to construct an example of a compatible g-function
having a g-measure which is ergodic but not weak-mixing.

We start with some preliminary definitions. As in [7], we introduce a partial
order on 1. First define 3 < ¢ <6 forany 0 <7<9. Thenzx <y ifz; 2y
for all ¢ € Z*. A function f: £19 — R is called monotonic if f(z) < f(y)
whenever z < y. We will say that a function f: ¥;3 — R is precompatible if
F(090909...) = £(909090...) and f(ai090909...) = f(aj909090...), where a
is any finite word, ¢ is any symbol with 0 < i < 9 and j = ¢ + 1. We write this
second condition as f(5,090909...) = f(b+ 1,909090...) for any finite word b
not ending in a 9.

We will need to consider the involutions on ;4 given by

F(:c)n-——{g_xn ?fnfs odd,
I if n is even;
R(z), =9 — z,.

Write Z for R(x), & for F(z) and Z for R o F(z). We say that a function f is
symmetric if f(Z) = f(z) for all z.

Write « for the map £19 — I, defined by = — Y 50 2,106+ We will
identify Y19 with I and often omit reference to m, when applying functions on I
to arguments in ¥qg.
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2. Construction of the Example
To construct the example, we will use the following lemma.

LEMMA 3: There exists a precompatible, compatible, symmetric, monotonic
g-function g with the property that if one considers random variables (X,)
evolving as

P(Xn = ZI Xn—l =a, Xn_.z =4ag, .. ) = h(i,al,az, . ),

conditioned upon X; = 6, for all i« < 0, then there exists a 3 > % such that
P(X, = 6) > § for all n.

We will write Pg for the probability distribution on (X,) defined in this way.
The construction shown here differs from the construction in [7] only in the initial
stages. The reader should note that that paper in turn is based on [3].

Proof: Define 6(z) = xs(x) — x3(z), where x;(z) is 1 if zo = i and 0 otherwise.
Then let A,,(z) = ZZ’__BI §(ci(x)). To construct h, we will need to define a
collection of functions W, .: £19 — (0,1) indexed by 0 <4 < 9 and m > n > 0.
These will be based on a family of functions V,, ,, whose existence is asserted by
the following lemma.

LEMMA 4: There exists a family Vi, , (where m > n > 0) of compatible,
precompatible, monotonic Holder continuous functions satisfying

0< Vm,n(z) <1,

Vo n(2) { 1 if Ap(z) > n,
mnl\T) = .
' 0 ifAn(z)<n.

The construction of the V,, , is rather involved and is (in the author’s opinion)
a distraction from the main flow of the paper. It has therefore been relegated
to an appendix to the paper. Once the V,, ,, have been defined, the W,, ,, are
defined as follows:

mmn ‘i)’
W,"n’n(x) = % — %(Vm,n(x) + Vi n(Z)) fori#3,6.

Note that for each z, Z?:o W}, o(x) = 1 and since we require n > 0, we have
that for each z, only one of V;, »(z) and V,, () is positive. This implies that
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W¢, .(z) is bounded below by g for i # 3,6. Let ¢; = 1(2)7, so S =1
We will choose n; and m; such that taking g(iz) = o i1 Wm n, (z) will give a
compatible continuous g with more than one g-measure. The choice of n; and m;
will be made inductively, by considering certain Holder continuous truncations of
the final g-function. Suppose ni,...,ng..1 and my,...,mg_; are chosen. Then
define vectors as follows:

y = ( 3 7 3 3 7 3 3 3)
- 80’80’80’20’80’80’20’80’80’80

with indices running from 0 to 9. Now define

oo
ZIL‘) ZqJ ™my,mnj )+quzi’
j=k
Zq] mJ,n] + qrlU; + Z q;Vi,

j=k+1

qu m,,nJ +quMN Z q;Vi,

j=k+41

where M > N > 0. These are all Holder continuous g-functions and as such
have unique g-measures (see {8]), which we call uf where e = 1,2,3. First note
that gi is symmetric: g}(1 — z) = 1 — g}(x). This means the unique invariant
measure must be preserved under the involution z — 1 — z. It follows that
pil6] = pi[3]. We will use the order-preserving properties of § to show that
uR((61) > pi((6]) > ni((6]) and p([3]) < wE((8]) < mA([3). Let ax = Z(2)*.

LEMMA 5: We have 2 ([6]) > uj([6]) +2ax and p3([3]) < pi([3]) —2ax. Further,
suppose we are given x € ¥19. Then there is a coupling of the two processes (Yy,)
and (Z,) evolving under gz and g}z respectively, conditioned on Y; = Z; = z_;,
for all i <0 such that Y,, < Z, with probability 1 for all n.

Proof: The proof works by finding couplings of two processes evolving under
different g-functions, which make it obvious that the required inequalities hold.

It is easy to check that g2(6z) — g}(6z) = 24 and g?(3x) — g1 (3z) = —2ay,
while gZ(iz) = gi(iz) for all i # 3,6 and all x.
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We use this to give an explicit coupling of two random processes (X,) and
(Yy.) evolving under gi and g? respectively as in (1). We write P(ix, jy) for the
probability that 7 is added to = and j is added to y. The transition probability
will only be defined when z < y, and it must therefore have P(iz < jy) =1 in
order that it can be applied repeatedly. Suppose z < y. Then define

( 9x(6) ifi=j=6,
max (0, g (iz) — gZ(iy)) if i #3,6 and j = 6,
Pliz, jy) = min(gi(ix)', g,%(zy)) ifi=j+#3,86,
max (0, g2(iy) — gi(iz)) if i =3 and j # 3,6,
min(g%(Gy) - g,ﬁ(Gx), g1 (3z) — g%(3§)) ifi=3and j =6,
L g2(3y) ifi=j=3.

We note that all the transition probabilities are non-negative, and we must just
check that the marginals of this coupling are as claimed. We compute one exam-
ple as an illustration. We will show that under P, the probability that = goes to
3z is g}(3x) as required. By observation, we see that the probability that = goes
to 3z is

92(3y) + min(gZ(6y) — gx(6x), g4 (3z) — gi (3y)) + 8 max(0, gi(iy) — gi(iz))
g4 (3z) + min(gf(6y) — gx(6) — 95 (32) + gi(3y),0)
+ 8 max(0, g(iy) — gi(ix))
g4(3z) + min(8g}(iz) — 8gZ(ix),0) + 8 max(0, gi(iy) — gi(iz))
= gx(3z)

]

as required, where ¢ is any symbol distinct from 3 and 6. This shows that given
that £ < y, we can choose i and j such that y evolves according to g2 and z
according to gi such that with probability 1, iz < jy. Looking further at the
coupling, we see that the probability that y is preceded by a 6 and z is not
preceded by a 6 given that = < y is gZ(6y) — gi(6z), but gZ(6y) — g4 (6y) = 20
and gi(6y) > gi(6z), so it follows that with (z,y) goes to (iz, 6y) for some i # 6
with probability at least 2. It follows that p2([6]) > ui([6]) + 20k. A similar
argument shows that p2([3]) < pi([3]) — 2ak.

To prove the remaining parts of the Lemma, it is necessary to consider a
coupling of processes (Y;) evolving under g and (Z,) evolving under g;. This
is done by a coupling exactly similar to the coupling above, with g2 replacing g
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and g} replacing g2. The conclusion then is that given that y < z, then y can
be allowed to evolve under gZ and z under g in such a way that the ordering is
preserved. For a more formal and general discussion of couplings, the reader is
referred to Lindvall’s book [5]. |

We now describe the inductive choice of mi and n;. In each case,
ny is given by |axmy|. Suppose we have chosen mi, my,... ,mg_1 and hence
ni,Ma,... ,nk—1. Let n(z) = x()(z) — x(g)(z) and Aj(z) = S n(oi(x)). Let
Gj = {z: Aj(z) > n;} and H; = {z: A;(z) > 3n;}. Then note that 0™"i (H;) C
G;. Note also that if x € H; and y > z, then y € H;. Assume that there are
ti,t2,...tk—1 such that

(3) P((X¢,, Xe;1,-..) € Hj| Xoi =, Vi>0) > 1477,

for all j < k and z € Z10, where the X, evolve according to g]3.
Let Ay = {z: A(z) > 3axm}. We know [n(z) dui(z) > 4ax and we will
use this to show pi(A4,) — 1 as m — oo.

LEMMA 6: We have p2(An) — 1 as m — oo.

Proof: Suppose the claim does not hold. Since we have u2(A,,) < 1 for all m,
the only way the claim can fail is if there exists an € > 0 and a sequence M; such
that u2(Apm,) <1~ e for all <. In this case, we have

pl LJA,-c >eforallj, sou? ﬂUAic > e
i>j J >3

Let S be ), U;5; 4i°. If z € S then

n—1

.o 1 i
lim inf - Z; n(o*(z)) < 3o.

We have however that u2 is ergodic, so for almost all z (with respect to u2), we

have
1 n—1 )
nll»IEo ” Z n(o*(x)) > 4oy.
i=0
This is a contradiction. 1

Next, pick my such that pi(Amk) > 1—4~% and agmy, > tp_y. Now Hy, = Am,.
Since g? is Hélder continuous, we can apply Walters’ theorem [8] to get that
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Lg2" XH, (z) converges uniformly to u?(Hy), which is greater than 1 — 4%, It
follows that there exists a t,, such that Lgit’“ XH,(z) > 1—47F for all x € Tyo.
This says that for all x € 4,

]P’((th,th_l,.. ) € Hkl X ;=x;, Vi> 0) >1- 4_k,

where the X, evolve according to g7, but by the second statement of Lemma 5,
it follows that the same equation holds when the evolution is according to g;.
This is precisely the statement of (3) when we take j to be k. This completes
the inductive step.

To complete the inductive construction of the example, it remains only to
specify an initial case for the induction. Taking to > 1, applying the above
induction step produces my, ny and t; which can be used as a starting point for
the induction.

In the above section, the m; and n; were inductively constructed, so the
g-function is now given by

oo
g(iz) =Y Wi . (2).
j=1

This is clearly compatible, precompatible, monotonic and continuous.

We consider the events E% that (X;, X;—_1,...) € Hi. Write Pg for the proba-
bility distribution of the X,, conditioned on X; = 6 for all ¢ < 0 with subsequent
evolution under g. Informally, E} is the event that the process has a ‘large
majority of 6s over 3s at the my scale at time t’. We then consider letting the
process evolve from an initial condition of all 6s (so Ps(EY) = 1, Vk). We show
inductively that the events Ef have a high probability by induction on ¢, using
the result of (3), which says that if the process has a large majority of 6s on
scales my41, Mi42, ... at time ¢ —tx, then with high probability, the process will
have a majority of 6s on scale my at time ¢.

LEMMA 7: We have
(4) Pe(EL) > 1 — (r,

forallt € Z and k € N, where ¢ = %4"‘.

Proof: The proof is by induction on ¢. Note that the hypothesis is automati-
cally true for all k if ¢ < 0, so we need only prove the inductive step. Suppose
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(4) holds for all t < s then pick k € N. Let § = (\;5, £;~ . Then by the
induction hypothesis, Ps(S°) < 3", ¢ = 747k, Now we decompose E;° as

(BN S)U (BN S¢). We then have

Po(ER") < Po(E{° N S) + Pe(5) < Po(E°|S) + 347%.
But now suppose w € S. Then let

= (Xs—t,, Xs—t,—1,-..) and 2= (X¢Xs_1,...).

Then z € (V;5 H;. It follows that if y € 07%(x), for some ¢ < t then y €
ﬂj>k G;. In particular, g(y) = g2(y), where the M and N in g} are taken to
be my and ng. It follows that the evolution of z for ¢; steps takes place under
g3, but by (3), the probability that z € E{ is no more than 47*. In particular,
we have shown that Pg(E;®) < (} as required. This completes the proof of the
inductive step and hence of the lemma. i

We apply this by calculating Ps(X,, = 6). Using the Lemma above, this is
bounded below by 2121 g ((1- Cj)-?; + ¢j75)- This turns out to be equal to Z—(l).
Let u,, = p%(Pg), as defined in §1. Then we have

prnp1([iz] ™) =/ g(iy) dun(y).

[=]™

Now let v, = %Z;:Ol p;. Then we see

< 2
_n'

va(fiz]™) — / 9(ig) dva(y)

fx]™

Taking a weak*-convergent subsequence v,, — v of the v,, we find

v((iz]™) = / o(iy) duy).

[«]™

As noted in §1, this implies that v is a g-measure. However u,([6]) > i—(l), for all

n, so it follows that v([6]) > L. This completes the proof of Lemma 3. |
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3. Proof of Theorem 1

In this section, we use the results of §2 to prove Theorem 1, subject to the
construction of V,, , in the appendix.

Proof of Theorem 1: Let g and Pg be as defined in the previous section. Take
pin = p%,(Ps) and form Cesiro sums v, = L S"7"" ;. Then we see (as in [7]) that
if v, is a weak™-convergent subsequence, converging to a measure v, then v is a
g-measure. We see also that v([6]), the measure of those members of T4 starting
with a 6 is at least 3. We may assume v is ergodic, for otherwise, by ergodic
decompostion, there is another g-measure with this property. If v is not ergodic
with respect to o2, then one can check that there exist sets A and B of measure %
such that 0~ 1(A4) = B and 0~ '(B) = A. It then follows quickly that v is ergodic
but not weak-mixing and by Lemma 2 and the compatibility of g, Theorem 1
follows. It remains to consider the case where v is ergodic with respect to o2.
We note that the involution F defined above is not shift-commuting, but that F
does commute with o2. Define a new measure u by p(4) = %V(/i) + %V(/‘i). This

is shift-invariant. Now we have

pllia]™*) _ 3R + vl _ () + ()
WG T B + ) (&) + v(@)

Then using the symmetry of g, we see g(iZ) = g(i%), so we get

ntl
nlingo % = g(ix) = g o F(iz).
It follows that p is an h-measure, where h = g o F. Note that by the precom-
patibility of g, h is compatible. It remains to show that p is ergodic but not
weak-mixing. Suppose for a contradiction that ¢~ !(4) = A and 0 < p(A) < 1.
Then p(A) = 3v(A) + 1v(A), but 0~ (A) = 4 and 6~1(4) = A. It follows that
v(A) = v(A), s0 0 < v(A) < 1. But this is a contradiction as 0~2(4) = Aand v
is assumed to be ergodic with respect to o2, proving that 4 is ergodic.

Next, note that g is not ergodic with respect to 62 as p = 1 + 3 12, where py
and pp are o2-invariant measures defined by p;(A) = v(A) and py(A4) = v(A).
These are not equal as p1([6]) > 3 > p2([6]). It follows that 4 is not weak-mixing,
thus completing the proof of Theorem 1 subject to the proof of Lemma 4 in the

appendix. ]
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Appendix. Construction of V,, ,,
Proof of Lemma 4: In this appendix, we give the construction of the function
Vim,n, which was introduced in §2. First we define a contraction map £ on the
subspace X of (C[0,1])* with the metric induced by the uniform norm:
X = {(f1, f2, f3, f4): £i: [0,1] = [0,1]; f1(0) = f3(0) =0, f1(1) = f5(1) =1,
f2(0) = f4(0) =1, f2(1) = fu(1) = O}.

We will identify I with £,y so ¢ will denote the map = — 100z mod 1. The
map L is defined by ‘C(fla f27 f37 f4) = (gh g2, gSag‘l)’ where

(0 0<z<.04

s f1(0%(z)) 04< 1< .05

3+ 30(0%(x)) 05<z< .06

1 .06 <z < .09

3+ 1 falo?(z)) 09<z<.10
1-1fi1-o%z) 10<z<.11

0 1<z<.15

1f1(c%(x)) 15<z<.16

% A6 <z < .17

o1(z) = 3f2(0%(x)) 17<z< .18

' T 0 18 <z < .40

1-1f(1-0%(z) 40<z< .41

3f2(0%(2)) 41< < 42

0 42<z< 45

5 f1(d%(x)) 45 < 1 < .46

3 46 < ¢ < 4T

5 f2(0*(z)) 4T < < 48

0 A8 < 1 < 49

3 f3(o%(z)) 49 < 1 < .50
Ll—m(l—x) 50<z<1,
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(1-1fa(1-0%(x)) 0<2<.01
3/2(d%(2)) 01<z<.02
0 02<z<.04
3/1(0%(z)) 04<z<.05
1+1f(%2))  .05<z<.06
1 06 <z < .07
L4 ify(o¥(z))  07<z<.08
gfx) =19 1, 7,
3f2(0*(2)) 08 <z < .09
0 09<z<.15
3f1(d%(z)) 15<z < .16
: 16 <z <.19
3f4(a%(z)) 19<z < .20
g1(x) 20<z<.80
Ll—gz(l—z) 80<z <1,
( 91(x) 0<z<.07
(z) = | 92(z) 07<z<.15
) =
% 0 15<z<.2
\ 91(1') 2<z<1,
ga{z) 0<2<.07
94(z) = { 91(2) 07<z <15
92(x) 15<z < 1.

It is then straightforward to check that £ is indeed a contraction map from X
to X, and it follows that there is a unique fixed point, e = (ey, e, €3, €4). Using
the fact that these form a fixed point of £, it is straightforward to check that if =
and y agree for 2n digits, then the difference between e;(z) and e;(y) is at most
2", It follows that the functions e; are Holder continuous when considered as
functions ¥19 — [0, 1]. Since the functions are continuous as maps [0, 1] — [0, 1],
it follows that considered as functions 19 — [0, 1], they are compatible.

Next, suppose that z < y and z and y differ in either the zeroth or first place.
Then it is easy to see that e;(x) < e;(y) for each 7 just by examining the condition
that e is a fixed point of £. Then one checks that z < y implies e;(z) < e;(y)
for each ¢ by induction on the first place in which they differ. It follows that the
functions e; are monotonic.
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We also need to check the precompatibility of the functions e;. First note the
following table of values of the functions e;. For later use, we include also two
additional functions es and eg defined by es(z) = 1 — e3(1 — z) and eg(z) =
1—es(l~1x).

0 .0909... .9090... 0

el 0 1 0 1

€2 1 0 1 0

(5) es 0 0 0 1
€4 1 1 1 0

€5 0 1 1 1

€6 1 0 0 0

It is then a routine matter to check that e;(a0909...) = e;(a + 1,9090...) for
each ¢ < 4, where a is any word of length 1 or 2 whose last digit is not a 9.
Then by induction on the length of the word, as before, we see that the e; are
precompatible for each ¢ < 4.

We have therefore checked that the e; (1 < i < 4) are monotonic, compatible,
precompatible, Holder continuous and take values as shown in (5). One can check
that es and eg also have these properties. Further the functions e; are all equal
on the range 0.2 < x < 0.8. This implies that forming f;; defined by

fij(x) = {

for 3 < 4,57 < 6 gives 16 functions, each of which is monotonic, compatible,
precompatible and Holder continuous. Looking at (5), we see that these functions
take all combinations of values of 0 and 1 on the set {0,.0909...,.9090...,1}.
We label the functions according to their values on each of these four points as
di,iyizi, SO for example dgy19 takes values 0,1,1 and 0 at 0,.0909...,.9090... and
1 respectively, so dg110 = f54-

To define V, ., we also need to define two further maps defined on words
of S = {0,...,9}™. We have already made implicit use of the equivalence
relation ~ generated by a0909... ~ a +1,9090..., for any word a not ending
with a 9 when discussing precompatibility. Given a word a € S, define ¢(a)
by the requirement that a0909... ~ ¢(a)9090... and v (a) by the requirement
that a9090... ~ (a)0909.... We are now in a position to specify V,, . This
is defined cylinder by cylinder. If a € S, write [a] for those elements of Xy
whose first m digits are given by a. Define x: S,,, — {0,1} by «(b) = 1 if
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Anm(b) > n and k(b) = 0 otherwise. By a + 1, we mean the word obtained by
adding 1 (with carry if necessary). The word a — 1 is defined similarly, so for
example, 99999 4+ 1 = 00000 and 88900 ~ 1 = 88899. Then given a € S,,, define
N(a) = k(a — 1),k(¢(a)), k(¢(a)), k(a + 1). Note that |A,(a) — Ap(a + 1)|,
Am(@) = Am(a = DIy [Am(a) = An(@(@))] and |Am(a) — An(w(a))] are al
bounded above by 1. Given this, we set

1 Am(a) >n,
Vinin () = { 0 Anm(a) <,
dn(a)(0™(@)) Am(a)=n.

The function Vi, , defined in this way is then seen to be Holder continuous,
monotonic, compatible and precompatible. Further, it satisfies 0 < V,,, , < 1,
Vimn(z) = 1 when A, (z) > n and V,,, n(z) = 0 when A,,(z) < n as required.
This completes the construction and hence the proof of Lemma 4 and Theorem
1. |
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Bose who suggested the problem. It would be interesting to see if the other
examples in [2] could also be made to be C, rather than just continuous.
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